Variational Mixture of Gaussian Process Experts

نویسندگان

  • Chao Yuan
  • Claus Neubauer
چکیده

Mixture of Gaussian processes models extended a single Gaussian process with ability of modeling multi-modal data and reduction of training complexity. Previous inference algorithms for these models are mostly based on Gibbs sampling, which can be very slow, particularly for large-scale data sets. We present a new generative mixture of experts model. Each expert is still a Gaussian process but is reformulated by a linear model. This breaks the dependency among training outputs and enables us to use a much faster variational Bayesian algorithm for training. Our gating network is more flexible than previous generative approaches as inputs for each expert are modeled by a Gaussian mixture model. The number of experts and number of Gaussian components for an expert are inferred automatically. A variety of tests show the advantages of our method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Allocation of Gaussian Process Experts

We propose a scalable nonparametric Bayesian regression model based on a mixture of Gaussian process (GP) experts and the inducing points formalism underpinning sparse GP approximations. Each expert is augmented with a set of inducing points, and the allocation of data points to experts is defined probabilistically based on their proximity to the experts. This allocation mechanism enables a fas...

متن کامل

Hierarchical Double Dirichlet Process Mixture of Gaussian Processes

We consider an infinite mixture model of Gaussian processes that share mixture components between nonlocal clusters in data. Meeds and Osindero (2006) use a single Dirichlet process prior to specify a mixture of Gaussian processes using an infinite number of experts. In this paper, we extend this approach to allow for experts to be shared non-locally across the input domain. This is accomplishe...

متن کامل

Automated Variational Inference for Gaussian Process Models

We develop an automated variational method for approximate inference in Gaussian process (GP) models whose posteriors are often intractable. Using a mixture of Gaussians as the variational distribution, we show that (i) the variational objective and its gradients can be approximated efficiently via sampling from univariate Gaussian distributions and (ii) the gradients wrt the GP hyperparameters...

متن کامل

Building Large-Scale Occupancy Maps using an Infinite Mixture of Gaussian Process Experts

This paper proposes a novel method of occupancy map building for large-scale applications. Although Gaussian processes have been successfully applied to occupancy map building, it suffers from high computational complexity of O(n), where n is the number of training data, limiting its use for large-scale mappings. We propose to take a divide-and-conquer approach by partitioning training data int...

متن کامل

Infinite Mixtures of Gaussian Process Experts

We present an extension to the Mixture of Experts (ME) model, where the individual experts are Gaussian Process (GP) regression models. Using an input-dependent adaptation of the Dirichlet Process, we implement a gating network for an infinite number of Experts. Inference in this model may be done efficiently using a Markov Chain relying on Gibbs sampling. The model allows the effective covaria...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008